Lambda liftingLambda lifting is a meta-process that restructures a computer program so that functions are defined independently of each other in a global scope. An individual "lift" transforms a local function into a global function. It is a two step process, consisting of; Eliminating free variables in the function by adding parameters. Moving functions from a restricted scope to broader or global scope. The term "lambda lifting" was first introduced by Thomas Johnsson around 1982 and was historically considered as a mechanism for implementing functional programming languages.
Paramètre (programmation informatique)En programmation informatique, un paramètre est une donnée manipulée par une section de code (voir : sous-programme, fonction, méthode) et connue du code appelant cette section. On distingue deux types de paramètres. Un paramètre d'entrée est une donnée fournie par le code appelant au code appelé. Cette donnée peut être transmise de deux façons : passage par copie (aussi appelé par valeur) : le code appelé dispose d'une copie de la valeur qu'il peut modifier sans affecter l'information initiale dans le code appelant ; passage par adresse (aussi appelé par référence) : le code appelé dispose d'une information lui permettant d'accéder en mémoire à la valeur que le code appelant cherche à lui transmettre.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Fonction anonymeEn programmation informatique, une fonction anonyme, aussi appelée lambda expression ou fonction lambda est une fonction n'ayant pas de nom. Les fonctions anonymes existent dans certains langages de programmation comme Python, JavaScript, OCaml ou C++. Certains langages, comme le C et Pascal (tout au moins les versions standards de ces langages), ne permettent pas d'écrire des fonctions anonymes. Parce que ces fonctions n'ont pas de nom, à l'endroit où l'on voudrait mettre leur nom, on trouve directement les instructions définissant la fonction introduites par une syntaxe particulière.
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.