Taylor's lawTaylor's power law is an empirical law in ecology that relates the variance of the number of individuals of a species per unit area of habitat to the corresponding mean by a power law relationship. It is named after the ecologist who first proposed it in 1961, Lionel Roy Taylor (1924–2007). Taylor's original name for this relationship was the law of the mean. The name Taylor's law was coined by Southwood in 1966. This law was originally defined for ecological systems, specifically to assess the spatial clustering of organisms.
Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
Tweedie distributionIn probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
Société de l'informationLa société de l'information désigne un état de la société dans lequel les technologies de l'information et de la communication jouent un rôle fondamental. Elle est en général placée dans la continuité de la société industrielle. De même, la notion de société de l'information a été inspirée par les programmes des grands pays industriels. Par ailleurs, l'expression de société de la connaissance est parfois préférée à celle de société de l'information. Elle est au centre de différents débats dont celui concernant la « fracture numérique ».
Loi de Benfordthumb|upright=1.5|La loi de Benford stipule que le premier chiffre d'un nombre issu de données statistiques réelles n'est pas équiprobable. Un chiffre a d'autant plus de chance de figurer en premier qu'il est petit. La loi de Benford, initialement appelée loi des nombres anormaux par Benford, fait référence à une fréquence de distribution statistique observée empiriquement sur de nombreuses sources de données dans la vraie vie, ainsi qu'en mathématiques.