Arrest of a radial hydraulic fracture upon shut-in of the injection
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Hydraulic fracturing is a technique often used in the oil and gas industry to enhance the production of wells in low-permeability reservoirs. It consists of fluid injection at a sufficiently large injection rate to create and propagate tensile fractures in ...
We investigate the growth of a plane-strain/radial hydraulic fracture in an infinite impermeable medium driven by a constant injection rate assuming that the apparent toughness scales with the decreasing fracture growth rate in a power-law relation. The vi ...
Well completion for oil and gas, geothermal energy as well as CO2 storage sometimes require stimulation to achieve economical fluid flow rates (for both injector and producer wells). Predicting the growth of fluid-driven fractures in geological systems is ...
Hydraulic stimulation is an engineering technique whose aim is to enhance the permeability of fractured rock masses at depths ranging from one to five kilometers. It consists in the injection of fluid at sufficiently high pressure in order to shear pre-exi ...
The propagation of fluid driven fractures is used in a number of industrial applications (well stimulation of unconventional reservoirs, development of deep geothermal systems) but also occurs naturally (magmatic dyke intrusion). While the mechanics of hyd ...
Water-induced strength reduction is one of the most critical causes of rock engineering disasters. Understanding the influence of water on the fracture toughness of rocks is necessary for rock fracture mechanics and rock engineering applications such as mi ...
Hydraulic fracturing is a widespread technology used to enhance reservoir production but also to measure the in-situ stress field. It consists of growing a tensile (mode I) fracture via the injection of a viscous fluid (usually at a constant rate) from a w ...
Experimental studies suggest that the fracture toughness of rocks increases with the confining pressure. Among many methods to quantify this dependency, a so-called burst experiment (Abou-Sayed, 1978) may be the most widely applied in practice. Its thick w ...
Hydraulic fracturing has a wide range of applications. It is widely studied and modelled to better understand all the possible situations and foresee possible advantage in the industry. When it comes to modelling, the struggle of being able to simulate com ...
Laboratory experiments have been carried out to investigate the growth of hydraulic fracture (HF) in an anisotropic rock with pre-existing discontinuities such as bedding planes and veins. The experiments are designed in light of scaling relationships that ...