Reduction techniques for PDEs built upon Reduced Basis and Domain Decomposition Methods with applications to hemodynamics
Publications associées (65)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we set the mathematical foundations of the Dynamical Low Rank Approximation (DLRA) method for high-dimensional stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vect ...
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...
In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Peclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Str ...
This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...
Many scientific inquiries in natural sciences involve approximating a spherical field -namely a scalar quantity defined over a continuum of directions- from generalised samples of the latter (e.g. directional samples, local averages, etc). Such an approxim ...
We are interested in a reduced order method for the efficient simulation of blood flow in arteries. The blood dynamics is modeled by means of the incompressible Navier–Stokes equations. Our algorithm is based on an approximated domain-decomposition of the ...
Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finalized by simulating its physical behavior, which usually i ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
Accurate simulations of molecular quantum dynamics are crucial for understanding numerous natural processes and experimental results. Yet, such high-accuracy simulations are challenging even for relatively simple systems where the Born-Oppenheimer approxim ...