Publication

A Reduced Order Model for Domain Decompositions with Non-conforming Interfaces

Résumé

In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems with Dirichlet and Neumann interface conditions, respectively. After discretization by, e.g., the finite element method, the full-order model (FOM) is solved by Dirichlet-Neumann iterations between the two sub-problems until interface convergence is reached. We then apply the reduced basis (RB) method to obtain a low-dimensional representation of the solution of each sub-problem. Furthermore, we apply the discrete empirical interpolation method (DEIM) at the interface level to achieve a fully reduced-order representation of the DD techniques implemented. To deal with non-conforming FE interface discretizations, we employ the INTERNODES method combined with the interface DEIM reduction. The reduced-order model (ROM) is then solved by sub-iterating between the two reduced-order sub-problems until the convergence of the approximated high-fidelity interface solutions. The ROM scheme is numerically verified on both steady and unsteady coupled problems, in the case of non-conforming FE interfaces.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Décomposition polaire
La décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).
Décomposition primaire
La décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Méthode d'Euler
En mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Afficher plus
Publications associées (38)

A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid-liquid interfaces

Ignacio Pagonabarraga Mora

We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodyna ...
AIP Publishing2022

Efficient lattice Green's function method for bounded domain problems

William Curtin, Ankit Gupta, Max Ludwig Hodapp

The lattice Green's function method (LGFM) is the discrete counterpart of the continuum boundary element method and is a natural approach for solving intrinsically discrete solid mechanics problems that arise in atomistic-continuum coupling methods. Here, ...
WILEY2022

Conservation of Forces and Total Work at the Interface Using the Internodes Method

Simone Deparis

The Internodes method is a general purpose method to deal with non-conforming discretizations of partial differential equations on 2D and 3D regions partitioned into disjoint subdomains. In this paper we are interested in measuring how much the Internodes ...
2022
Afficher plus
MOOCs associés (16)
Projet de programmation en java
The purpose of this MOOC is to offer a complementary capstone project to our existing MOOCs in introduction to programming. This will offer the students the possibility to both stabilize the already a
Introduction à la Programmation Orientée Objet (en Java)
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.