Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Physique de la matière condenséeLa physique de la matière condensée est la branche de la physique qui étudie les propriétés microscopiques et macroscopiques de la matière dans un état dit « condensé ». Ce terme doit être entendu par opposition à d'autres états de la matière, plus dilués, tels que l’état gazeux et les plasmas, ou encore par opposition à l’étude des atomes ou molécules isolés ou peu nombreux. Son objet d’étude consiste donc principalement dans les solides, ce qui explique que cette branche de la physique a longtemps été désignée par le terme de « physique des solides ».
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Designvignette|Chaise de Charles Rennie Mackintosh, 1897. Le design, le stylisme ou la stylique est une activité de création souvent à vocation industrielle ou commerciale, pouvant s’orienter vers les milieux sociaux, politiques, scientifiques et environnementaux. Le but premier du design est d’inventer, d’améliorer ou de faciliter l’usage ou le processus d’un élément ayant à interagir avec un produit ou un service matériel ou virtuel.
Méthode du cluster coupléLa méthode du cluster couplé, ou théorie du cluster couplé (expression souvent abrégée en « cluster couplé », en anglais coupled cluster) est une technique numérique de description des systèmes à plusieurs corps. Son utilisation la plus répandue est comme méthode ab initio de chimie quantique post-Hartree-Fock en chimie numérique. Il est basé sur la méthode d'orbitale moléculaire Hartree-Fock et lui ajoute un terme de correction afin de prendre en compte la corrélation électronique.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Computational resourceIn computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems. The simplest computational resources are computation time, the number of steps necessary to solve a problem, and memory space, the amount of storage needed while solving the problem, but many more complicated resources have been defined. A computational problem is generally defined in terms of its action on any valid input.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.