On the Kodaira vanishing theorem for log del Pezzo surfaces in positive characteristic
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We investigate the vanishing of H1(X,OX(−D)) for a big and nef Q-Cartier Z-divisor D on a log del Pezzo pair (X,Δ) over a perfect field of positive characteristic p.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, the Kodaira vanishing theorem is a basic result of complex manifold theory and complex algebraic geometry, describing general conditions under which sheaf cohomology groups with indices q > 0 are automatically zero. The implications for the group with index q = 0 is usually that its dimension — the number of independent global sections — coincides with a holomorphic Euler characteristic that can be computed using the Hirzebruch–Riemann–Roch theorem.
En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.
In algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
The topic of this thesis is vanishing theorems in positive characteristic. In particular, we use "the covering trick of Ekedahl" to investigate the vanishing of H1(X,OX(−D)) for a big and nef Weil divisor D on a normal projective variety w ...
We show that for a surjective, separable morphism f of smooth projective varieties over a field of positive characteristic such that f(*) OX congruent to O-Y subadditivity of Kodaira dimension holds, provided the base is of general type and the Hasse-Witt ...