Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Prédiction de gènesEn bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
Modèle de circulation généraledroite|vignette|Modèle de circulation générale GEOS-5 (Goddard Earth Observing System Model) développé par la NASA. Un modèle de circulation générale (en anglais, general circulation model ou GCM) est un modèle climatique. Il s'appuie sur les équations de Navier-Stokes, appliquées à une sphère en rotation ainsi que sur des équations d'équilibre de la thermodynamique pour inclure les sources d'énergie (rayonnement, changement de phase). Ceci permet de simuler à la fois la circulation atmosphérique mais aussi la circulation océanique.
Prédiction de la structure des protéinesLa prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.