Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Despite the excellent photovoltaic properties achieved by perovskite solar cells at the laboratory scale, hybrid perovskites decompose in the presence of air, especially at high temperatures and in humid environments. Consequently, high-efficiency perovskites are usually prepared in dry/inert environments, which are expensive and less convenient for scale-up purposes. Here, a new approach based on the inclusion of an in situ polymerizable ionic liquid, 1,3-bis(4-vinylbenzyl)imidazolium chloride ([bvbim]Cl), is presented, which allows perovskite films to be manufactured under humid environments, additionally leading to a material with improved quality and long-term stability. The approach, which is transferrable to several perovskite formulations, allows efficiencies as high as 17% for MAPbI(3)processed in air % relative humidity (RH) >= 30 (from an initial 15%), and 19.92% for FAMAPbI(3)fabricated in %RH >= 50 (from an initial 17%), providing one of the best performances to date under similar conditions.
Kevin Sivula, Jun Ho Yum, Parnian Ferdowsi, Jiyoun Seo
Quentin Jean-Marie Armand Guesnay