Measuring and modeling the motor system with machine learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
Whether it occurs in artificial or biological substrates, {\it learning} is a {distributed} phenomenon in at least two aspects.
First, meaningful data and experiences are rarely found in one location, hence {\it learners} have a strong incentive to work t ...
Motivation: Unbiased clustering methods are needed to analyze growing numbers of complex data sets. Currently available clustering methods often depend on parameters that are set by the user, they lack stability, and are not applicable to small data sets. ...
Text summarization is considered as a challenging task in the NLP community. The availability of datasets for the task of multilingual text summarization is rare, and such datasets are difficult to construct. In this work, we
build an abstract text summari ...
Association for Computational Linguistics (ACL)2019
This paper analyses how a course on improvisation and collective creation in engineering addressed to master's students in Switzerland moved online. The course offers an experience in the field of performing arts, through embodied and situated activities, ...
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption ...
We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particu ...
In the Internet of Things (IoT), the large volume of data generated by sensors poses significant computational challenges in resource-constrained environments. Most existing machine learning algorithms are unable to train a proper model using a significant ...
Here we demonstrate the suitability of a local mutual information measure for estimating the temporal dynamics of cross-frequency coupling (CFC) in brain electrophysiological signals. In CFC, concurrent activity streams in different frequency ranges intera ...
Recent studies have shown that the labels collected from crowdworkers can be discriminatory with respect to sensitive attributes such as gender and race. This raises questions about the suitability of using crowdsourced data for further use, such as for tr ...