Design and fabrication of a vigorous "cavitation-on-a-chip" device with a multiple microchannel configuration
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we propose a method to create a natively hydrophilic microfluidic structure in a fast and simple way using an UV-curable polymer (NOA 63 from Norland Optics). This polymer can provide a substitute to PDMS microchannels offering high reproduc ...
In this paper, we propose a method to create a natively hydrophilic microfluidic structure in a fast and simple way using an UV-curable polymer (NOA 63 from Norland Optics). This polymer can provide a substitute to PDMS microchannels offering high reproduc ...
PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes. ...
Abstract Microfluidics for most bio-related diagnostic applications typically requires single usage disposable chips to avoid bio-fouling and cross-contamination. Individual piece-wise manufacturing of polymeric microfluidic devices has been widely employe ...
We introduce for the first time an integrated optofluidic interferometer on a PDMS microfluidic chip. By imaging the local interference patterns inside the chip, both of the fluid pressure and flow rate can be measured. (C) 2009 Optical Society of America ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2010
We present a technology for the fabrication of three dimensional microfluidic channels in optically transparent substrates consisting of polymers with different properties. The microstructures are fabricated using polymer replication techniques with a view ...
2005
, ,
An experimental work has been carried out to investigate the dynamic behavior and the intensity of erosive partial cavitation on a 2-D hydrofoil. Both sheet (stable) and cloud (unstable) cavitation have been tested in a cavitation tunnel for various free s ...
2007
, ,
Near field generated by plasmonic structures has recently been proposed to trap small objects. We report the first integration of plasmonic trapping with microfluidics for lab-on-a-chip applications. A three-layer plasmo-microfluidic chip is used to demons ...
With the growing importance of miniaturized energy applications and the development of micro Total Analysis Systems (μTAS), we have realized microfluidic devices, namely, magnetic micropumps, microfluidic fuel cells and membrane-based protein preconcentrat ...
We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pre ...