Espace-temps (structure algébrique)En physique mathématique, lespace-temps peut-être modélisé par une structure d'algèbre géométrique satisfaisant la géométrie décrite par la relativité restreinte. On parle alors dalgèbre d'espace-temps ou algèbre spatio-temporelle (Space-time algebra en anglais). L'espace-temps contient alors des vecteurs, bivecteurs et autres multivecteurs qui peuvent être combinés les uns aux autres ainsi que transformés selon les transformations de Lorentz ou autres transformations possibles dans une algèbre géométrique (notamment les réflexions).
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
GravitonLe graviton est une particule élémentaire hypothétique qui transmettrait la gravité, prévue dans la plupart des systèmes de gravité quantique. Il serait donc le quantum de la force gravitationnelle. En langage courant, on peut dire que les gravitons sont les messagers de la gravité, ou les supports de la force. Pour matérialiser cette force, on pourrait prendre l'exemple d'une fronde avec la ficelle (graviton) qui tient la pierre. Plus il y en a dans un champ gravitationnel, plus ce champ est puissant.
Longue droiteLa longue droite est un espace topologique analogue à la droite réelle, « en beaucoup plus long ». En tant qu'ensemble ordonné, la longue droite, L, est le produit lexicographique du premier ordinal non dénombrable ω1 par l'ensemble des réels positifs ou nuls. En tant qu'espace topologique, c'est cet ensemble (totalement) ordonné muni de la topologie de l'ordre (les intervalles ouverts forment une base de la topologie). Cet espace topologique est une variété topologique à bord non séparable.