MP3Le MPEG-1 Audio Layer ou MPEG-2 Audio Layer , plus connu sous son abréviation de MP3, est la spécification audio des standards MPEG-1 et MPEG-2. Il s'agit d'un format de compression audio avec perte permettant une réduction importante de la taille du flux de données audio, tout en conservant une qualité de restitution couramment jugée acceptable, donnant le choix du débit selon le compromis taille-qualité souhaité. C'est aussi l'un des formats de musique numérique les plus répandus. L'extension de nom de fichier est .
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Gestion de la mémoireLa gestion de la mémoire est une forme de gestion des ressources appliquée à la mémoire de l'ordinateur. L'exigence essentielle de la gestion de la mémoire est de fournir des moyens d'allouer dynamiquement des portions de mémoire aux programmes à leur demande, et de les libérer pour réutilisation lorsqu'elles ne sont plus nécessaires. Ceci est essentiel pour tout système informatique avancé où plus d'un processus peuvent être en cours à tout moment. Catégorie:Architecture informatique Catégorie:Pages avec
Portable Network GraphicsLe Portable Network Graphics (PNG, prononcé « ping ») est un format ouvert d’, . Le PNG est un format sans perte spécialement adapté pour publier des images simples comprenant des aplats de couleurs. Il a été normalisé par l’ISO (ISO/CEI 15948:2004). PNG est une spécification pour Internet et l’objet d’une Recommandation W3C et d’une RFC. Il a été créé pour contourner la licence existante sur le format GIF, le plus en vogue à la fin des années 1990, Unisys, propriétaire de deux brevets sur des algorithmes utilisés par la compression sous GIF ayant réclamé des royalties.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Mémoire virtuellethumb|Schéma de principe de la mémoire virtuelle. En informatique, le mécanisme de mémoire virtuelle a été mis au point dans les années 1960. Il repose sur l'utilisation de traduction à la volée des adresses (virtuelles) vues du logiciel, en adresses physiques de mémoire vive. La mémoire virtuelle permet : d'utiliser de la mémoire de masse comme extension de la mémoire vive ; d'augmenter le taux de multiprogrammation ; de mettre en place des mécanismes de protection de la mémoire ; de partager la mémoire entre processus.
Memory protectionMemory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it. This prevents a bug or malware within a process from affecting other processes, or the operating system itself. Protection may encompass all accesses to a specified area of memory, write accesses, or attempts to execute the contents of the area.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.