Simulation à événements discretsLa simulation à évènements discrets est une technique utilisée dans le cadre de l’étude de la dynamique des systèmes. Elle consiste en une modélisation informatique où le changement de l'état d'un système, au cours du temps, est une suite d'évènements discrets. Chaque évènement arrive à un instant donné et modifie l'état du système. De nos jours, cette technique est couramment utilisée tant par les industries et les entreprises de services afin de concevoir, optimiser et valider leurs organisations que par les centres de recherche dans l’optique d’étudier les systèmes complexes non linéaires.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Price elasticity of demandA good's price elasticity of demand (, PED) is a measure of how sensitive the quantity demanded is to its price. When the price rises, quantity demanded falls for almost any good, but it falls more for some than for others. The price elasticity gives the percentage change in quantity demanded when there is a one percent increase in price, holding everything else constant. If the elasticity is −2, that means a one percent price rise leads to a two percent decline in quantity demanded.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Économie collaborativeLéconomie collaborative ou économie de partage regroupe les activités économiques qui reposent sur le partage ou la mutualisation des biens, savoirs, services ou espaces et sur l'usage plutôt que la possession. Popularisé par le livre de Rachel Botsman et Roo Rogers What’s Mine Is Yours: How Collaborative Consumption is Changing the Way We Live, le terme d'économie collaborative et le champ qu'il recouvre ne font pas l'objet d'un consensus.
Predictive modellingPredictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Écomobilitévignette|Mère transportant ses enfants dans un vélo cargo. Un mode de transport en fort développement dans les pôles urbains. vignette|Le vélo à assistance électrique permet d'étendre le rayon d'utilisation du vélo pour les trajets domicile-travail et cible ainsi davantage des utilisateurs périurbains ou éloignés de leur lieu de travail. vignette|Tramway à droite et tram-train à gauche à Mulhouse. Ce dernier mode de transport circule à la fois sur le réseau de tramway urbain et sur le réseau ferroviaire périurbain, qui se retrouvent ainsi interconnectés.
Risk aversionIn economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome. Risk aversion explains the inclination to agree to a situation with a more predictable, but possibly lower payoff, rather than another situation with a highly unpredictable, but possibly higher payoff.