Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Problème de l'isomorphisme de sous-graphesvignette|Le problème est de savoir si un graphe contient un autre graphe comme sous-graphe. En informatique théorique, le problème de l'isomorphisme de sous-graphes est le problème de décision suivant : étant donnés deux graphes G et H, déterminer si G contient un sous-graphe isomorphe à H. C'est une généralisation du problème de l'isomorphisme de graphes. Soient et deux graphes. Le problème de décision de l'isomorphisme de sous-graphe est : « Est-ce qu'il existe un sous-graphe , avec et , tel qu'il existe une bijection telle que ? ».
Problème de l'isomorphisme de graphesvignette|Le problème est de savoir si deux graphes sont les mêmes. En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. Ce problème est particulièrement important en théorie de la complexité, plus particulièrement pour le problème P=NP.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Mémoire cacheUne mémoire cache ou antémémoire est, en informatique, une mémoire qui enregistre temporairement des copies de données provenant d'une source, afin de diminuer le temps d'un accès ultérieur (en lecture) d'un matériel informatique (en général, un processeur) à ces données. Le principe du cache est également utilisable en écriture, et existe alors en trois modes possibles : write-through, write-back et write-around.
Stream processingIn computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation.
Linkless embeddingIn topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Algorithmes de remplacement des lignes de cacheArticle principal : mémoire cache Les mémoires caches dans les matériels informatiques sont le plus souvent partiellement associatives : une ligne de la mémoire principale ne peut être rangée que dans une partie bien définie de la mémoire cache. Dans le cas d'une mémoire cache logicielle, il est possible qu'elle soit totalement associative et gérée globalement. Dans les deux cas, se pose le problème de devoir dégager une place dans la mémoire cache, ou dans la partie de celle-ci concernée, lorsque celle-ci est pleine et qu'on veut y charger des données de la mémoire principale.