Concept

Problème de l'isomorphisme de sous-graphes

Résumé
In theoretical computer science, the subgraph isomorphism problem is a computational task in which two graphs G and H are given as input, and one must determine whether G contains a subgraph that is isomorphic to H. Subgraph isomorphism is a generalization of both the maximum clique problem and the problem of testing whether a graph contains a Hamiltonian cycle, and is therefore NP-complete. However certain other cases of subgraph isomorphism may be solved in polynomial time. Sometimes the name subgraph matching is also used for the same problem. This name puts emphasis on finding such a subgraph as opposed to the bare decision problem. To prove subgraph isomorphism is NP-complete, it must be formulated as a decision problem. The input to the decision problem is a pair of graphs G and H. The answer to the problem is positive if H is isomorphic to a subgraph of G, and negative otherwise. Formal question: Let , be graphs. Is there a subgraph such that ? I. e., does there exist a bijection such that ? The proof of subgraph isomorphism being NP-complete is simple and based on reduction of the clique problem, an NP-complete decision problem in which the input is a single graph G and a number k, and the question is whether G contains a complete subgraph with k vertices. To translate this to a subgraph isomorphism problem, simply let H be the complete graph Kk; then the answer to the subgraph isomorphism problem for G and H is equal to the answer to the clique problem for G and k. Since the clique problem is NP-complete, this polynomial-time many-one reduction shows that subgraph isomorphism is also NP-complete. An alternative reduction from the Hamiltonian cycle problem translates a graph G which is to be tested for Hamiltonicity into the pair of graphs G and H, where H is a cycle having the same number of vertices as G. Because the Hamiltonian cycle problem is NP-complete even for planar graphs, this shows that subgraph isomorphism remains NP-complete even in the planar case.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.