Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Technologies de l'éducationLes technologies de l'éducation (Edtech en anglais, pour Educational technology) désignent l'ensemble des nouvelles technologies permettant de faciliter l’enseignement et l'apprentissage. On parle alors de technologies pédagogiques qui permettent d'apprendre de nouveaux contenus sous une forme ludique, stimulante et innovante. Le terme Edtech, né de la contraction d'« éducation » et de « technologie », est apparu dans la littérature anglophone en 2010. Il est devenu populaire pour désigner les startups qui innovent au service de l'éducation.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Learning spaceLearning space or learning setting refers to a physical setting for a learning environment, a place in which teaching and learning occur. The term is commonly used as a more definitive alternative to "classroom," but it may also refer to an indoor or outdoor location, either actual or virtual. Learning spaces are highly diverse in use, configuration, location, and educational institution. They support a variety of pedagogies, including quiet study, passive or active learning, kinesthetic or physical learning, vocational learning, experiential learning, and others.
Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Apprentissage hybridevignette|Illustration de l'apprentissage hybride qui consiste à combiner les séquences de formation en ligne L'apprentissage hybride ou mixte (en anglais « en ») est une formule pédagogique qui résulte d’une combinaison de séquences de formation en ligne (e-learning) et de formation en présentiel. Elle offre certains avantages comme un espace de travail plus collaboratif pour les apprenants. L’utilisation des technologies de l’information et de la communication donne l’opportunité à l’apprenant d’avoir, dans une certaine mesure, un contrôle sur le temps, le lieu, les moyens et la vitesse.
Learning environmentThe term learning environment can refer to an educational approach, cultural context, or physical setting in which teaching and learning occur. The term is commonly used as a more definitive alternative to "classroom", but it typically refers to the context of educational philosophy or knowledge experienced by the student and may also encompass a variety of learning cultures—its presiding ethos and characteristics, how individuals interact, governing structures, and philosophy.
Noms des grands nombresLes noms des grands nombres sont des systèmes de dérivation lexicale qui permettent de nommer des nombres au-delà du langage courant. Dans les langues occidentales modernes, les grands nombres sont généralement nommés d'après l'un ou l'autre des deux systèmes incompatibles suivants : les échelles longue et courte. Ces deux systèmes définissent différemment les mots « billion », « trillion », « quadrillion » L'échelle longue définit aussi les noms « billiard », « trilliard », « quadrilliard » L'usage a souvent varié, même dans un pays donné, suivant les époques.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.