Nanophotonic biosensors harnessing van der Waals materials
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its ...
van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-kappa layered d ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...
This thesis introduces spectroscopy-free Raman biosensing, which may find increasing use in the next generation of wearable devices for preventive healthcare. While wearables have made substantial advancements in detecting physical biomarkers, they have ye ...
The escalating energy demand and the imperative necessity to reduce the carbon footprint require transformative approaches to energy conversion. Materials chemistry plays a pivotal role in addressing these global challenges by developing novel materials fo ...
Surface functionalization of 1D materials such as silicon nanowires is a critical preparation technology for biochemical sensing. However, existing nonselective functionalization techniques result in nonlocal binding and contamination, with potential devic ...
Medical research and technological advancements are heading towards tailored healthcare approaches that prioritize individual needs, allowing for more accurate diagnoses, more effective treatments, and better patient outcomes overall. One such approach is ...
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...