Inégalité de Bienaymé-TchebychevEn théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Minimisation d'un automate fini déterministevignette|upright=1.5|Dans cet automate, tous les états sont accessibles, les états c, d et e sont indistinguables, ainsi que les états a et b. vignette|upright=1.5|Automate minimal équivalent. Les états indistinguables sont regroupés en un seul état. En informatique théorique, et plus particulièrement en théorie des automates, la minimisation d'un automate fini déterministe est l'opération qui consiste à transformer un automate fini déterministe donné en un automate fini déterministe ayant le nombre minimal d'états et qui reconnaît le même langage rationnel.