Fixed effects modelIn statistics, a fixed effects model is a statistical model in which the model parameters are fixed or non-random quantities. This is in contrast to random effects models and mixed models in which all or some of the model parameters are random variables. In many applications including econometrics and biostatistics a fixed effects model refers to a regression model in which the group means are fixed (non-random) as opposed to a random effects model in which the group means are a random sample from a population.
Mouvement pour les droits des personnes autistesthumb|alt=Symbole de l'infini aux couleurs de l'arc-en-ciel.|Un symbole de l'infini aux couleurs de l'arc-en-ciel symbolise le spectre autistique et le mouvement de la neurodiversité. Le mouvement pour les droits des personnes autistes, également connu sous le nom de mouvement pour la culture autiste, est un mouvement social né à la fin des années 1980 sur l’initiative de personnes autistes revendiquant leur droit à l'expression de la diversité humaine, tout en luttant contre l'exclusion.
Imagerie cérébraleLimagerie cérébrale (dite aussi neuro-imagerie) désigne l'ensemble des techniques issues de l' qui permettent d'observer le cerveau, en particulier lorsqu'un individu exécute une tâche cognitive. L'observation du cerveau par autopsie est imprécise et incomplète en ce qu'elle se limite à l'analyse d'un état figé qui ne peut rendre compte d'effets liés aux évolutions dans l'organe vivant. Le premier effort connu de neuro-imagerie visant à dépasser cette limite a été la « balance de circulation humaine » de Angelo Mosso développée dans les années 1880.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Sulcus (morphology)In biological morphology and anatomy, a sulcus (: sulci) is a furrow or fissure (Latin fissura, : fissurae). It may be a groove, natural division, deep furrow, elongated cleft, or tear in the surface of a limb or an organ, most notably on the surface of the brain, but also in the lungs, certain muscles (including the heart), as well as in bones, and elsewhere. Many sulci are the product of a surface fold or junction, such as in the gums, where they fold around the neck of the tooth.
Réseau locomoteur spinalLe réseau locomoteur spinal, ou central pattern generator (CPG) en anglais, est un réseau de neurones localisé dans la moelle spinale responsable de la locomotion. La particularité de ce réseau est qu’il peut fonctionner de manière autonome, indépendamment des commandes descendantes et des retours sensoriels . Après avoir été activé par le cortex moteur ou d'autres régions supraspinales telles que la région mésencéphalique locomotrice (MLR en anglais), ce réseau peut générer à lui seul l’activité locomotrice.
Kernel principal component analysisIn the field of multivariate statistics, kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space. Recall that conventional PCA operates on zero-centered data; that is, where is one of the multivariate observations.
Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Computational anatomyComputational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures. The field is broadly defined and includes foundations in anatomy, applied mathematics and pure mathematics, machine learning, computational mechanics, computational science, biological imaging, neuroscience, physics, probability, and statistics; it also has strong connections with fluid mechanics and geometric mechanics.