Adaptation in Stochastic Algorithms: From Nonsmooth Optimization to Min-Max Problems and Beyond
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
Driven by the need for more efficient and seamless integration of physical models and data, physics -informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains ...
A novel approach for linear parameter-varying (LPV) controller synthesis for adaptive rejection of time-varying sinusoidal disturbances is proposed. Only the frequency response data of a linear time-invariant (LTI) multiple-input multiple-output (MIMO) sys ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the construction ...
In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size γ and momentum parameter β that allows u ...
Quantum support vector machines employ quantum circuits to define the kernel function. It has been shown that this approach offers a provable exponential speedup compared to any known classical algorithm for certain data sets. The training of such models c ...