Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Organogermanium chemistryOrganogermanium chemistry is the science of chemical species containing one or more C–Ge bonds. Germanium shares group 14 in the periodic table with carbon, silicon, tin and lead. Historically, organogermanes are considered as nucleophiles and the reactivity of them is between that of organosilicon and organotin compounds. Some organogermanes have enhanced reactivity compared with their organosilicon and organoboron analogues in some cross-coupling reactions.
HypercycleEn géométrie hyperbolique, un hypercycle est une courbe formée de tous les points situés à la même distance, appelée le rayon, d'une droite fixée (appelée son axe). Les hypercycles peuvent être considérés comme des cercles généralisés, mais possèdent aussi certaines propriétés des droites euclidiennes ; dans le modèle du disque de Poincaré, les hypercycles sont représentés par des arcs de cercles. En géométrie euclidienne, l'ensemble de tous les points situés à distance donnée d'une droite donnée est formée de deux parallèles à cette droite (c'est cette propriété que Clairaut prend comme définition du parallèlisme).