Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging
Publications associées (43)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Incomplete labels are common in multi-task learning for biomedical applications due to several practical difficulties, e.g., expensive annotation efforts by experts, limit of data collection, different sources of data. A naive approach to enable joint lear ...
Test time augmentation has been shown to be an effective approach to combat domain shifts in deep learning. Despite their promising performance levels, the interpretability of the underlying used models is however low. Saliency maps have been widely used i ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
The present invention is related to an endoscopic system for phase imaging, comprising a multicore waveguide (080), an optical system comprising at least one first light source (002), for illuminating the sample to be examined, a first camera (010) that is ...
Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolut ...
Classic image-restoration algorithms use a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Hence, deep learning methods often produce superior image restoration ...
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system and affects almost 3 million people worldwide. There is currently no cure for MS, and its symptoms, starting with fatigue and weakness, often progress over time ...
EPFL2022
Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with unmatched soft tissue contrast. However, compared to imaging methods like X-ray radiography, MRI suffers from long scanning times, due to its inherently sequential acqui ...
EPFL2022
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
EPFL2022
,
Cryo-electron tomography (Cryo-ET) has been regarded as a revolution in structural biology and can reveal molecular sociology. Its unprecedented quality enables it to visualize cellular organelles and macromolecular complexes at nanometer resolution with n ...