Théorie des domainesLa théorie des domaines est une branche des mathématiques dont le principal champ d'application se trouve en informatique théorique. Cette partie de la théorie des ensembles ordonnés a été introduite par Dana Scott pendant les années 1960, afin de fournir le cadre théorique nécessaire à la définition d'une sémantique dénotationnelle du lambda-calcul. Les domaines sont des ensembles partiellement ordonnés.
Positive-definite kernelIn operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics.
Noyau (algèbre)En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme.
Early stoppingIn machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with each iteration. Up to a point, this improves the learner's performance on data outside of the training set. Past that point, however, improving the learner's fit to the training data comes at the expense of increased generalization error.
Sigma additivitévignette|Illustration de la sigma additivité La sigma additivité, appelé aussi additivité dénombrable, est un concept en théorie de la mesure. Soit un ensemble et un ensemble de parties de . On dit que l'application μ est σ-additive sur lorsqu'elle vérifie la propriété suivante : si E1, E2, ... est une suite d'éléments de , si ces parties de sont deux à deux disjointes et si leur réunion E est aussi un élément de , alors la valeur μ(E) de μ sur cette réunion E est égale à la somme des valeurs de μ sur les parties Ek : Il s'agit d'une version plus forte de l'additivité simple.