Résumé
En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme. Dans l'une ou l'autre de ces situations, le noyau est trivial si et seulement si le morphisme est injectif. Dans la première situation, « trivial » signifie constitué uniquement de l'élément neutre, tandis que dans la seconde, cela signifie que la relation est l'égalité. Le noyau d'un morphisme f est noté ker(f) ou Ker(f). Cette abréviation vient du mot allemand Kern qui signifie « noyau » (dans tous les sens du terme : l'analogie s'est propagée d'une langue à l'autre). Cet article présente diverses définitions du noyau, pour les types les plus couramment utilisés de morphismes. Le noyau d'un morphisme de groupes f d'un groupe G vers un groupe H se compose de tous les éléments de G qui sont envoyés par f sur l'élément neutre eH de H. Formellement : Le noyau est un sous-groupe distingué de G. L'un des théorèmes d'isomorphisme énonce que le groupe quotient G/ker(f) est isomorphe à l'image de f. Cet isomorphisme est induit par f lui-même. Une proposition légèrement plus générale est le théorème de factorisation des morphismes. Le morphisme de groupes f est injectif si et seulement si son noyau est le groupe trivial. D'après les propriétés de l', le noyau d'un morphisme composé est égal à : Si f est une application linéaire d'un espace vectoriel V dans un espace vectoriel W, alors le noyau de f est défini par Le noyau est un sous-espace de l'espace vectoriel V, et l'espace vectoriel quotient V/ker(f) est isomorphe à l'image de f ; en particulier, le théorème du rang relie les dimensions : L'application linéaire f est injective si et seulement si ker(f) = {0}.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.