En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme. Dans l'une ou l'autre de ces situations, le noyau est trivial si et seulement si le morphisme est injectif. Dans la première situation, « trivial » signifie constitué uniquement de l'élément neutre, tandis que dans la seconde, cela signifie que la relation est l'égalité. Le noyau d'un morphisme f est noté ker(f) ou Ker(f). Cette abréviation vient du mot allemand Kern qui signifie « noyau » (dans tous les sens du terme : l'analogie s'est propagée d'une langue à l'autre). Cet article présente diverses définitions du noyau, pour les types les plus couramment utilisés de morphismes. Le noyau d'un morphisme de groupes f d'un groupe G vers un groupe H se compose de tous les éléments de G qui sont envoyés par f sur l'élément neutre eH de H. Formellement : Le noyau est un sous-groupe distingué de G. L'un des théorèmes d'isomorphisme énonce que le groupe quotient G/ker(f) est isomorphe à l'image de f. Cet isomorphisme est induit par f lui-même. Une proposition légèrement plus générale est le théorème de factorisation des morphismes. Le morphisme de groupes f est injectif si et seulement si son noyau est le groupe trivial. D'après les propriétés de l', le noyau d'un morphisme composé est égal à : Si f est une application linéaire d'un espace vectoriel V dans un espace vectoriel W, alors le noyau de f est défini par Le noyau est un sous-espace de l'espace vectoriel V, et l'espace vectoriel quotient V/ker(f) est isomorphe à l'image de f ; en particulier, le théorème du rang relie les dimensions : L'application linéaire f est injective si et seulement si ker(f) = {0}.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (23)
Anneau (mathématiques)
vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Théorème de factorisation
En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient. Soit un ensemble muni d'une relation d'équivalence et la surjection canonique. L'unicité de g est immédiate et guide la preuve de son existence, dont voici plusieurs variantes : Preuve « naïve » : pour tout élément , on pose .
Homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Afficher plus