Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Coût marginalLe coût marginal est le coût induit par une variation de l'activité. Pour les économistes, cette variation peut être infinitésimale, et le coût marginal est alors la dérivée de la fonction de coût. Pour les comptables, le coût marginal est défini comme la variation du coût engendrée par la production ou la vente d'une unité supplémentaire (ce qui est plus concret qu'un calcul de dérivée). Dans la réalité du monde de l'entreprise, la variation d'activité correspond généralement à une commande supplémentaire (qui peut donc porter sur un lot de plusieurs produits).
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Railway signallingRailway signalling ( ()), also called railroad signaling ( ()), is a system used to control the movement of railway traffic. Trains move on fixed rails, making them uniquely susceptible to collision. This susceptibility is exacerbated by the enormous weight and inertia of a train, which makes it difficult to quickly stop when encountering an obstacle. In the UK, the Regulation of Railways Act 1889 introduced a series of requirements on matters such as the implementation of interlocked block signalling and other safety measures as a direct result of the Armagh rail disaster in that year.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.
Rail transportRail transport (also known as train transport) is a means of transport that transfers passengers and goods on wheeled vehicles running on rails, which are incorporated in tracks. In contrast to road transport, where the vehicles run on a prepared flat surface, rail vehicles (rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails.Rolling stock in a rail transport system generally encounters lower frictional resistance than rubber-tyred road vehicles, so passenger and freight cars (carriages and wagons) can be coupled into longer trains.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Système d'électrification ferroviaireUn système d’électrification ferroviaire est l’ensemble des moyens mis en œuvre pour alimenter en énergie électrique les trains (locomotive électrique ou rame automotrice électrique). Les trains sont alimentés en courant alternatif haute tension ou en courant continu. L’alimentation passe par un troisième rail ou une caténaire et le retour de courant se fait par les rails de la voie ou un quatrième rail dédié. vignette|Le record du monde de vitesse de 1903 () a été établi sur une ligne électrifiée en triphasé.
Cost curveIn economics, a cost curve is a graph of the costs of production as a function of total quantity produced. In a free market economy, productively efficient firms optimize their production process by minimizing cost consistent with each possible level of production, and the result is a cost curve. Profit-maximizing firms use cost curves to decide output quantities. There are various types of cost curves, all related to each other, including total and average cost curves; marginal ("for each additional unit") cost curves, which are equal to the differential of the total cost curves; and variable cost curves.