Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large-scale feature selection problems. Identifying the knockoff distribution requires solving a large-scale semidefinite program for which we derive several efficient methods. One handles generic covariance matrices and has a complexity scaling as O(p(3)), where p is the ambient dimension, while another assumes a rank-k factor model on the covariance matrix to reduce this complexity bound to O(pk(2)). We review an efficient procedure to estimate factor models and show that under a factor model assumption, we can sample knockoff covariates with complexity linear in the dimension. We test our methods on problems with p as large as 500 000.
Florian Frédéric Vincent Breider, Myriam Borgatta
Richard Lee Davis, Engin Walter Bumbacher, Jérôme Guillaume Brender