Complexity theory and organizationsComplexity theory and organizations, also called complexity strategy or complex adaptive organizations, is the use of the study of complexity systems in the field of strategic management and organizational studies. It draws from research in the natural sciences that examines uncertainty and non-linearity. Complexity theory emphasizes interactions and the accompanying feedback loops that constantly change systems. While it proposes that systems are unpredictable, they are also constrained by order-generating rules.
Dynamique socialeLa dynamique sociale, renvoie, en sociologie, aux changements ou aux étapes successives dans l'évolution des faits sociaux. Elle permet d'envisager la société sous l'angle de son évolution. Elle complète la notion de statique socialeLa science sociale (1819-1822), introduction UQAC, A. Kremer-Marietti, 4 novembre 2006.. On retrouve le terme en chez Auguste Comte, dans son livre Système de politique positive, ou Traité de sociologie instituant la religion de l'humanité, dont le troisième tome s'appelle De la dynamique sociale.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
SyndromeUn syndrome est un ensemble de signes cliniques et de symptômes qu'un patient est susceptible de présenter lors de certaines maladies, ou bien dans des circonstances cliniques d'écart à la norme pas nécessairement pathologiques. Le terme est issu du grec ancien, de sun (avec) et dromos (course) — ce qui en fait l'équivalent du moderne « concours » (dans le sens de « concours de circonstances ») qui, pour sa part, est dérivé du latin. Étymologiquement, syndrome signifie donc « conjonction » ou « réunion d'éléments distincts ».
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Downsampling (signal processing)In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph).
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.