Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Loi binomiale négativeEn probabilité et en statistiques, une loi binomiale négative est la distribution de probabilité discrète du nombre d'échecs dans une série d'épreuves de Bernoulli indépendantes et identiquement distribuées jusqu'à avoir un nombre fixe n de succès. Par exemple, c'est la distribution de probabilité du nombre de piles obtenus dans une série de pile ou face jusqu'à avoir vu n faces. Plus précisément, elle décrit la situation suivante : une expérience consiste en une série de tirages indépendants, donnant un succès avec probabilité p (constante durant toute l'expérience) et un échec avec une probabilité complémentaire 1-p.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Loi bêta-binomiale négativeEn théorie des probabilités et en statistique, la loi bêta-binomiale négative est la loi de probabilité discrète d'une variable aléatoire X égale au nombre d'échecs nécessaires pour obtenir n succès dans une suite d'épreuves de Bernoulli où la probabilité p du succès est une variable aléatoire de loi bêta. La loi est alors une loi mélangée. Cette loi a également été appelée la loi inverse Markov-Pólya et la loi de Waring généralisée. Une version avec dérive de cette loi a été appelée la loi bêta-Pascal.
Generalized logistic distributionThe term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below. Type I has also been called the skew-logistic distribution. Type IV subsumes the other types and is obtained when applying the logit transform to beta random variates. Following the same convention as for the log-normal distribution, type IV may be referred to as the logistic-beta distribution, with reference to the standard logistic function, which is the inverse of the logit transform.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Loi du χ² non centréeEn théorie des probabilités et en statistique, la loi du χ non centrée est une loi de probabilité qui généralise la loi du χ2. Cette loi apparait lors de tests statistiques, par exemple pour le maximum de vraisemblance. Soit X, k variables aléatoires indépendantes de loi normale de moyennes et variances . Alors la variable aléatoire suit une loi du χ non centrée. Elle dépend de deux paramètres : k qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de X), et λ qui est en lien avec la moyenne des variables X par la formule : est parfois appelé le paramètre de décentralisation.
Test de StudentEn statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.