A first-order primal-dual method with adaptivity to local smoothness
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function. Our method updates only a subset of primal and dual variables with sparse data, an ...
Developing classification algorithms that are fair with respect to sensitive attributes of the data is an important problem due to the increased deployment of classification algorithms in societal contexts. Several recent works have focused on studying cla ...
Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalize ...
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution and linear convergence with standard ...
We analyze (stochastic) gradient descent (SGD) with delayed updates on smooth quasi-convex and non-convex functions and derive concise, non-asymptotic, convergence rates. We show that the rate of convergence in all cases consists of two terms: (i) a stocha ...
We propose a class of novel variance-reduced stochastic conditional gradient methods. By adopting the recent stochastic path-integrated differential estimator technique (SPIDER) of Fang et al. (2018) for the classical Frank-Wolfe (FW) method, we introduce ...
We consider multiagent decision making where each agent optimizes its convex cost function subject to individual and coupling constraints. The constraint sets are compact convex subsets of a Euclidean space. To learn Nash equilibria, we propose a novel dis ...
The problem of allocating the closed-loop poles of linear systems in specific regions of the complex plane defined by discrete time-domain requirements is addressed. The resulting non-convex set is inner-approximated by a convex region described with linea ...