A first-order primal-dual method with adaptivity to local smoothness
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We analyze (stochastic) gradient descent (SGD) with delayed updates on smooth quasi-convex and non-convex functions and derive concise, non-asymptotic, convergence rates. We show that the rate of convergence in all cases consists of two terms: (i) a stocha ...
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalize ...
The problem of allocating the closed-loop poles of linear systems in specific regions of the complex plane defined by discrete time-domain requirements is addressed. The resulting non-convex set is inner-approximated by a convex region described with linea ...
We propose a class of novel variance-reduced stochastic conditional gradient methods. By adopting the recent stochastic path-integrated differential estimator technique (SPIDER) of Fang et al. (2018) for the classical Frank-Wolfe (FW) method, we introduce ...
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution and linear convergence with standard ...
Developing classification algorithms that are fair with respect to sensitive attributes of the data is an important problem due to the increased deployment of classification algorithms in societal contexts. Several recent works have focused on studying cla ...
We consider multiagent decision making where each agent optimizes its convex cost function subject to individual and coupling constraints. The constraint sets are compact convex subsets of a Euclidean space. To learn Nash equilibria, we propose a novel dis ...
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function. Our method updates only a subset of primal and dual variables with sparse data, an ...