Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Module monogèneEn algèbre, un module monogène est un module qui peut être engendré par un seul élément. Par exemple, un Z-module monogène est un groupe (abélien) monogène. Le concept est analogue à celui de groupe monogène, c'est-à-dire un groupe qui est engendré par un élément. Un R-module gauche M est dit monogène si M peut être engendré par un seul élément, c'est-à-dire s'il existe x dans M tel que M = (x) = Rx = {rx | r ∈ R}. De même, un R-module à droite N est monogène s'il existe y ∈ N tel que N = yR.