Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Conception centrée sur l'utilisateurLa conception centrée sur l'utilisateur ou conception orientée utilisateur (UCD, user-centered design en anglais) est une philosophie et une démarche de conception surtout présente en ergonomie informatique, où les besoins, les attentes et les caractéristiques propres des utilisateurs finaux sont pris en compte à chaque étape du processus de développement d'un produit. La norme ISO 9241-210 qui annule et remplace la norme ISO 13407 définit sept ensembles de pratique de base pour mettre en œuvre le processus de conception centrée sur l'utilisateur.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Interface graphiquethumb|Quelques widgets typiques. En informatique, une interface graphique (en anglais GUI pour graphical user interface) ou un environnement graphique est un dispositif de dialogue homme-machine, dans lequel les objets à manipuler sont dessinés sous forme de pictogrammes à l'écran, de sorte que l'usager peut les utiliser en imitant la manipulation physique de ces objets avec un dispositif de pointage, le plus souvent une souris. Ce type d'interface a été créé en 1973 sur le Xerox Alto par les ingénieurs du Xerox PARC pour remplacer les interfaces en ligne de commande.
Interface utilisateur tangiblevignette|Reactable, un exemple d'interface utilisateur tangible Une interface utilisateur tangible est une interface utilisateur sur laquelle l'utilisateur interagit avec l'information numérique par le moyen de l'environnement physique. L'objectif de développement des interfaces utilisateur tangibles est d'encourager la collaboration, l'éducation et le design (conception) en donnant à l'information digitale une forme physique, profitant ainsi des capacités humaines de saisir et de manipuler des objets physiques et des matériaux.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Organic user interfaceIn human–computer interaction, an organic user interface (OUI) is defined as a user interface with a non-flat display. After Engelbart and Sutherland's graphical user interface (GUI), which was based on the cathode ray tube (CRT), and Kay and Weiser's ubiquitous computing, which is based on the flat panel liquid-crystal display (LCD), OUI represents one possible third wave of display interaction paradigms, pertaining to multi-shaped and flexible displays.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.