Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigate how spectral properties of a measure-preserving system (X, B, mu, T) are reflected in the multiple ergodic averages arising from that system. For certain sequences a :N -> N, we provide natural conditions on the spectrum sigma (T) such that, for all f(1), ..., f(k) is an element of L-infinity, lim(N ->infinity) 1/N Sigma(N)(n=1) Pi(k)(j=1) T-ja(n) f(j) = lim(N ->infinity) 1/N Sigma(N)(n=1) Pi(k)(j=1) T-jn fj in L-2-norm. In particular, our results apply to infinite arithmetic progressions, a(n) = qn + r, Beatty sequences, a(n) = [theta n + gamma], the sequence of squarefree numbers, a(n) = qn , and the sequence of prime numbers, a(n) = p(n). We also obtain a new refinement of Szemeredi's theorem via Furstenberg's correspondence principle.