Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a framework for analyzing probabilistic safety and reachability problems for discrete time stochastic hybrid systems in scenarios where system dynamics are affected by rational competing agents. In particular, we consider a zero-sum game formulation of the probabilistic reach-avoid problem, in which the control objective is to maximize the probability of reaching a desired subset of the hybrid state space, while avoiding an unsafe set, subject to the worst-case behavior of a rational adversary. Theoretical results are provided on a dynamic programming algorithm for computing the maximal reach-avoid probability under the worst-case adversary strategy, as well as the existence of a max-min control policy which achieves this probability. The modeling framework and computational algorithm are demonstrated using an example derived from a robust motion planning application. © 2011 IEEE.
Arjen Lenstra, Robert Granger, Thorsten Kleinjung, Benjamin Pierre Charles Wesolowski
Negar Kiyavash, Sina Akbari, Seyed Jalal Etesami
Nicolas Henri Bernard Flammarion