Experimental assessment of traffic density estimation at link and network level with sparse data
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we derive an explicit form of the convolution theorem for functions on an n-sphere. Our motivation comes from the design of a probability density estimator for n-dimensional random vectors. We propose a probability density function (pdf) est ...
Institute of Electrical and Electronics Engineers2010
Technical innovation and extensive application of adaptive signal control at intersections have made turning flow information that provide more precise constraints for Origin-Destination matrix (O-D matrix) estimation easily available in great quantity and ...
Joint processing of sensor array outputs improves the performance of parameter estimation and hypothesis testing problems beyond the slim of the individual sensor processing results. When the sensors have high data sampling rates, arrays are tethered, crea ...
Traditionally, spatial analysis of point pattern has been mostly focused on Euclidean space. As many human related phenomena take place on a network, the assumption of a continuous isotropic space fails to describe events which actually occur on a one-dime ...
This paper deals with the problem of probability density estimation with the goal of finding a good probabilistic representation of the data. One of the most popular density estimation methods is the Gaussian mixture model (GMM). A promising alternative to ...
We describe a novel variational segmentation algorithm designed to split an image in two regions based on their intensity distributions. A functional is proposed to integrate the probability density functions of both regions within the optimization process ...
A non-parametric method of distribution estimation for univariate data is presented. The idea is to adapt the smoothing spline procedure used in regression to the estimation of distributions via a scatterplot smoothing of theempirical distribution function ...
In this paper we aim to explore what is the most appropriate number of data samples needed when measuring the temporal correspondence between a chosen set of video and audio cues in a given audio-visual sequence. Presently the optimal model that connects s ...
Nous passons en revue des techniques de rééchantillonnage utilisées pour l'estimation de variance en sondage. Les techniques de rééchantillonnage considérées sont basées sur la linéarisation, le jackknife, les répétitions équilibrées répétées, et le bootst ...
We pose the estimation of the parameters of multiple superimposed exponential signals in additive Gaussian noise problem as a Maximum Likelihood (ML) estimation problem. The ML problem is very non linear and hard to solve. Some previous works focused on fi ...