Publication

Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation

Résumé

The eddy-covariance method provides the most direct estimates for fluxes between ecosystems and the atmosphere. However, dispersive fluxes can occur in the presence of secondary circulations, which can inherently not be captured by such single-tower measurements. In this study, we present options to correct local flux measurements for such large-scale transport based on a non-local parametric model that has been developed from a set of idealized large-eddy simulations. This method is tested for three real-world sites (DK-Sor, DE-Fen, and DE-Gwg), representing typical conditions in the mid-latitudes with different measurement heights, different terrain complexities, and different landscape-scale heterogeneities. Two ways to determine the boundary-layer height, which is a necessary input variable for modelling the dispersive fluxes, are applied, which are either based on operational radio soundings and local in situ measurements for the flat sites or from backscatter-intensity profiles obtained from co-located ceilometers for the two sites in complex terrain. The adjusted total fluxes are evaluated by assessing the improvement in energy balance closure and by comparing the resulting latent heat fluxes with evapotranspiration rates from nearby lysimeters. The results show that not only the accuracy of the flux estimates is improved but also the precision, which is indicated by RMSE values that are reduced by approximately 50 %. Nevertheless, it needs to be clear that this method is intended to correct for a bias in eddy-covariance measurements due to the presence of large-scale dispersive fluxes. Other reasons potentially causing a systematic underestimated or overestimation, such as low-pass filtering effects and missing storage terms, still need to be considered and minimized as much as possible. Moreover, additional transport induced by surface heterogeneities is not considered.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Covariance des turbulences
right|thumb|267x267px|Système de covariance des turbulences constitué d'un anémomètre à ultrasons et d'un analyseur de gaz à rayons infrarouges (infrared gas analyser, IRGA). La covariance des turbulences, corrélation des turbulences ou flux des turbulences sert à mesurer et à calculer les flux turbulents verticaux à l'intérieur des couches limites de l'atmosphère. La méthode analyse des jeux de données à hautes fréquences de vent et de valeurs scalaires, et produit les flux de ses propriétés.
Simulation des grandes structures de la turbulence
La simulation des grandes structures de la turbulence (SGS ou en anglais LES pour Large Eddy Simulation) est une méthode utilisée en modélisation de la turbulence. Elle consiste à filtrer les petites échelles qui sont modélisées et en calculant directement les grandes échelles de la cascade turbulente. Cette méthode a été introduite par Joseph Smagorinsky en 1963 et utilisée pour la première fois par James W. Deardoff en 1970. Elle permet de calculer un écoulement turbulent en capturant les grandes échelles pour un coût raisonnable.
Mean absolute error
In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size: It is thus an arithmetic average of the absolute errors , where is the prediction and the true value.
Afficher plus
Publications associées (34)

Constraining Latent and Sensible Heat Fluxes during Drifting and Blowing Snow Events in Antarctica using in–situ Measurements and Large–Eddy Simulations

Varun Sharma, Michael Lehning, Wolf Hendrik Huwald, Jérôme François Sylvain Dujardin, Franziska Gerber, Daniela Brito Melo, Francesco Comola, Armin Sigmund

Reliable predictions of sea level rise require a quantitative understanding of the mass balance of the Antarctic ice sheet. Water vapor exchange between snow and the atmospheric boundary layer may be an important term in the mass balance equation but curre ...
2023

Exploring alternative possibilities for sublimation measurements over snow and ice surfaces

Michael Lehning, Wolf Hendrik Huwald, Franziska Gerber, Armin Sigmund

Sublimation of snow is a major depletion mechanism, particularly in dry and windy environments such as high mountains or polar regions. Yet the quantification of the latent heat flux is a difficult task, and both measurements and estimates from models stil ...
2022

A data-science approach to predict the heat capacity of nanoporous materials

Berend Smit, Susana Garcia Lopez, Elias Moubarak, Balázs Álmos Novotny, Seyedmohamad Moosavi, Daniele Ongari, Mehrdad Asgari, Andres Adolfo Ortega Guerrero, Özge Kadioglu

The heat capacity of a material is a fundamental property of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most m ...
NATURE PORTFOLIO2022
Afficher plus
MOOCs associés (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.