Publication

Turbulent transport regimes in the tokamak boundary

Maurizio Giacomin
2022
Thèse EPFL
Résumé

The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significantly improve plasma confinement and, therefore, the tokamak fusion performance. In addition, the tokamak boundary determines the peak heat flux to the wall, an essential quantity for the design and the operation of fusion power plants, as well as the level of impurities in the core, the removal of fusion ash and the dynamics of neutral particles.The dynamics in the plasma boundary is strongly nonlinear and characterized by a wide range of length and time scales as well as by a complex magnetic field geometry that mayfeature one or more nulls of the poloidal magnetic field. Large-scale, three-dimensional turbulence simulations are therefore often required to disentangle the complex physicalmechanisms that govern this region.The thesis is focused on the analysis of the different turbulent transport regimes present in the plasma boundary as they appear from three-dimensional, flux-driven, global, two-fluid turbulence simulations carried out by using the GBS code, which is significantly extended here to allow the self-consistent simulation of the plasma dynamics coupled to a kinetic single-species neutral model in arbitrarily complex magnetic geometries. Considering single-null magnetic configurations, three turbulent transport regimes are identified: (i) a regime of suppressed turbulent transport at low values of collisionality and large values of heat source, (ii) a regime of developed turbulent transport at intermediate values of collisionality and heat source, and (iii) a regime of very large turbulent transport at high value of collisionality and density, which can be associated to the crossing of the density limit. By leveraging the results of GBS simulations, theory-based scaling laws of the pressure and density decay lengths in the near and far scrape-off layer are derived in the developed transport regime from a balance among heat source, turbulent transport across the separatrix and parallel losses at the vessel wall. The theoretical scaling of the pressure decay length in the near scrape-off layer is successfully validated against a multi-machine database of SOL width measurements at the outer target.By carefully analysing the transition to the regime of large turbulent transport, we show that the density limit can be explained by an enhancement of turbulent transport at thetokamak boundary when the density increases. This analysis leads to a theory-based scaling law of the maximum edge density achievable in tokamaks, which is in better agreement with a multi-machine database than the widely used Greenwald empirical scaling, thus significantly improving our understanding and predictive capability of thedensity limit, with important implications for the design and the operation of future fusion power plants.The thesis concludes by presenting the first turbulent simulations carried out in various snowflake magnetic configurations, which are used to investigate the effect of turbulenceand equilibrium flow on the heat flux distribution among the different strike points.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (30)
Énergie de fusion nucléaire
vignette| L'expérience de fusion magnétique du Joint European Torus (JET) en 1991. L'énergie de fusion nucléaire est une forme de production d'électricité du futur qui utilise la chaleur produite par des réactions de fusion nucléaire. Dans un processus de fusion, deux noyaux atomiques légers se combinent pour former un noyau plus lourd, tout en libérant de l'énergie. De telles réactions se produisent en permanence au sein des étoiles. Les dispositifs conçus pour exploiter cette énergie sont connus sous le nom de réacteurs à fusion nucléaire.
Fusion par confinement magnétique
La fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Turbulence
vignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Afficher plus
Publications associées (252)

Global fluid simulations of plasma turbulence in stellarators

António João Caeiro Heitor Coelho

In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
EPFL2024

Nonlinear simulation of plasma turbulence using a gyrokinetic moment-based approach

Antoine Cyril David Hoffmann

Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
EPFL2024

Divertor turbulence characterisation using Gas Puff Imaging in the TCV tokamak

Curdin Tobias Wüthrich

The performance of magnetic confinement fusion devices, such as tokamaks, is strongly correlated to the phenomena that occur in the boundary region of the plasma core that faces the wall of the device. The dominant cross-field transport mechanisms from the ...
EPFL2024
Afficher plus
MOOCs associés (12)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.