Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Throughout the global COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterized by increased transmissibility, increased virulence, or reduced neutralization by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole-genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches. Here, we adapt and apply a rapid, high-throughput method for detection and quantification of the frequency of two deletions characteristic of the B.1.1.7, B.1.351, and P.1 VOCs in wastewater. We further develop a statistical approach to analyze temporal dynamics in drop-off RT-dPCR assay data to quantify transmission fitness advantage, providing data similar to that obtained from clinical samples. Digital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.
Tamar Kohn, Xavier Fernandez Cassi
Bart Deplancke, Daniel Migliozzi, Gilles Weder, Riccardo Dainese, Daniel Alpern, Hüseyin Baris Atakan, Mustafa Demir, Dariia Gudkova