Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Satellite d'observation de la Terrethumb|Maquette du satellite ERS-2 (European Remote-Sensing Satellite), lancé en 1995. Un satellite d'observation de la Terre est un satellite artificiel utilisé pour effectuer des observations géophysiques et géographiques de la Terre depuis l'orbite terrestre. Cette catégorie de satellite est utilisée dans des applications telles que la météorologie, l'inventaire des ressources naturelles, la géodésie, l'étude et la modélisation du climat, la prévention et le suivi des catastrophes naturelles, la reconnaissance militaire.
Imagerie spatialethumb|Première image de la Terre prise par un satellite en orbite. Elle montre une zone éclairée par le Soleil dans l'océan Pacifique et la couverture nuageuse. L'image a été faite alors que le satellite Explorer 6 se trouvait à environ d'altitude, le . thumb|La région des Grands lacs vus depuis l'ISS en 2013 par l'astronaute canadien Chris Hadfield. L'imagerie spatiale est une technique d'observation à distance qui repose sur la prise d'images dans le domaine optique (lumière visible, infrarouge et ultraviolet) depuis l'espace par des équipements installés à bord de satellites artificiels.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Deep image priorDeep image prior is a type of convolutional neural network used to enhance a given image with no prior training data other than the image itself. A neural network is randomly initialized and used as prior to solve inverse problems such as noise reduction, super-resolution, and inpainting. Image statistics are captured by the structure of a convolutional image generator rather than by any previously learned capabilities.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Résumé automatique de texteUn résumé est une forme de compression textuelle avec perte d'information. Un résumé automatique de texte est une version condensée d'un document textuel, obtenu au moyen de techniques informatiques. La forme la plus connue et la plus visible des condensés de textes est le résumé, représentation abrégée et exacte du contenu d'un document. Cependant, produire un résumé pertinent et de qualité demande au résumeur (un humain ou un système automatique) l'effort de sélectionner, d'évaluer, d'organiser et d'assembler des segments d'information selon leur pertinence.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Earth observationEarth observation (EO) is the gathering of information about the physical, chemical, and biological systems of the planet Earth. It can be performed via remote-sensing technologies (Earth observation satellites) or through direct-contact sensors in ground-based or airborne platforms (such as weather stations and weather balloons, for example). According to the Group on Earth Observations (GEO), the concept encompasses both "space-based or remotely-sensed data, as well as ground-based or in situ data".