In computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames.
It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest. Early methods typically involve mid-level representations such as object proposals.
A joint object discover and co-segmentation method based on coupled dynamic Markov networks has been proposed recently, which claims significant improvements in robustness against irrelevant/noisy video frames.
Unlike previous efforts which conveniently assumes the consistent presence of the target objects throughout the input video, this coupled dual dynamic Markov network based algorithm simultaneously carries out both the detection and segmentation tasks with two respective Markov networks jointly updated via belief propagation.
Specifically, the Markov network responsible for segmentation is initialized with superpixels and provides information for its Markov counterpart responsible for the object detection task. Conversely, the Markov network responsible for detection builds the object proposal graph with inputs including the spatio-temporal segmentation tubes.
Graph cut optimization is a popular tool in computer vision, especially in earlier applications. As an extension of regular graph cuts, multi-level hypergraph cut is proposed to account for more complex high order correspondences among video groups beyond typical pairwise correlations.
With such hypergraph extension, multiple modalities of correspondences, including low-level appearance, saliency, coherent motion and high level features such as object regions, could be seamlessly incorporated in the hyperedge computation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Registration details will be announced via email. It takes place from September to December & intends to teach image processing with a strong emphasis of applications in life sciences. The idea is to
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
thumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.
L'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
La segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
EPFL2024
Explore le rôle central des vérités de base dans l'élaboration de nouveaux algorithmes et les défis de l'apprentissage statistique.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Résume la segmentation des images, les filtres morphologiques et convertit les pixels en objets.
This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and s ...