Robustness, replicability and scalability in topic modelling
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Ever since the links between the development of new technologies and economic growth became evident, researchers have attempted to study how the creation of knowledge fosters progress. If pushing the frontier of knowledge has an impact on progress and well ...
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to ...
Methods of estimating the similarity between individual publications is an area of long-standing interest in the scientometrics community. Traditional methods have generally relied on references and other metadata, while text mining approaches based on tit ...
This report presents a study on assisting users in building queries to perform real-time searches in a news and social media monitoring system. The system accepts complex queries, and we assist the user by suggesting related keywords or entities. We do thi ...
While social data is being widely used in various applications such as sentiment analysis and trend prediction, its sheer size also presents great challenges for storing, sharing and processing such data. These challenges can be addressed by data summariza ...
The bag-of-words (BOW) model is the common approach for classifying documents, where words are used as feature for training a classifier. This generally involves a huge number of features. Some techniques, such as Latent Semantic Analysis (LSA) or Latent D ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
In this thesis, we propose novel solutions to similarity learning problems on collaborative networks. Similarity learning is essential for modeling and predicting the evolution of collaborative networks. In addition, similarity learning is used to perform ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
In this thesis, we address the analysis of activities from long term data logs with an emphasis on video recordings. Starting from simple words from video, we progressively build methods to infer higher level scene semantics. The main strategies used to ac ...