Publication

Data Summarization with Social Contexts

Karl Aberer, Tian Guo, Rameez Rahman, Hao Zhuang, Xia Hu
2016
Article de conférence
Résumé

While social data is being widely used in various applications such as sentiment analysis and trend prediction, its sheer size also presents great challenges for storing, sharing and processing such data. These challenges can be addressed by data summarization which transforms the original dataset into a smaller, yet still useful, subset. Existing methods find such subsets with objective functions based on data properties such as representativeness or informativeness but do not exploit social contexts, which are distinct characteristics of social data. Further, till date very little work has focused on topic preserving data summarization, despite the abundant work on topic modeling. This is a challenging task for two reasons. First, since topic model is based on latent variables, existing methods are not well-suited to capture latent topics. Second, it is difficult to find such social contexts that provide valuable information for building effective topic-preserving summarization model. To tackle these challenges, in this paper, we focus on exploiting social contexts to summarize social data while preserving topics in the original dataset. We take Twitter data as a case study. Through analyzing Twitter data, we discover two social contexts which are important for topic generation and dissemination, namely (i) CrowdExp topic score that captures the influence of both the crowd and the expert users in Twitter and (ii) Retweet topic score that captures the influence of Twitter users' actions. We conduct extensive experiments on two real-world Twitter datasets using two applications. The experimental results show that, by leveraging social contexts, our proposed solution can enhance topic-preserving data summarization and improve application performance by up to 18%.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.