Noyau atomiquevignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
Force nucléaireLa force nucléaire, qui s'exerce entre nucléons, est responsable de la liaison des protons et des neutrons dans les noyaux atomiques. Elle peut être interprétée en termes d'échanges de mésons légers, comme les pions. Même si son existence est démontrée depuis les années 1930, les scientifiques n'ont pas réussi à établir une loi permettant de calculer sa valeur à partir de paramètres connus, contrairement aux lois de Coulomb et de Newton.
Liaison nucléaireLa liaison nucléaire est le phénomène qui assure la cohésion d'un noyau atomique. Le noyau atomique est composé de protons de charge électrique positive, et de neutrons de charge électrique nulle. La répulsion coulombienne tend à séparer les protons. C'est la force nucléaire qui permet d'assurer la stabilité du noyau. L'énergie de liaison E d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons, qui s'attirent du fait de la force nucléaire, force qui correspond à l’interaction forte résiduelle.
Hélium 4L’hélium 4, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 4 : son noyau atomique compte deux protons et deux neutrons pour une masse atomique de et un spin 0+. Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Son rayon de charge a pu être estimé expérimentalement à . En physique nucléaire, le noyau d' est souvent appelé particule α. Sur Terre, l'hélium 4 provient de la radioactivité α des éléments lourds présents dans la planète depuis sa formation.
Interaction fortethumb|250px|alt=Représentation des quarks dans un proton : deux quarks Up et un quark Down, chacun d'un couleur différente, liés par l'interaction forte.|L'interaction forte lie les quarks dans les nucléons, ici dans un proton. L'interaction forte, ou force forte, appelée parfois force de couleur, ou interaction nucléaire forte, est l'une des trois interactions entre particules élémentaires de la matière dans le modèle standard aux côtés de l'interaction électromagnétique et de l'interaction faible.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
Énergie de liaisonL'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Numéro atomique400px|droite Le numéro atomique (Z) représente, en chimie et en physique, le nombre de protons d'un atome. Ce dernier peut être schématisé, en première approche, par une agglomération compacte (noyau atomique) de protons (p+) et de neutrons (n), autour de laquelle circulent des électrons (e−). Dans un atome de charge électrique neutre, le nombre d'électrons est égal au numéro atomique. Comme les protons sont les seuls éléments du noyau avec une charge, le nombre de protons est égal au nombre d'électrons.
Particule αLes particules alpha (ou rayons alpha) sont une forme de rayonnement émis, principalement, par des noyaux instables de grande masse atomique. Elles sont constituées de deux protons et deux neutrons combinés en une particule identique au noyau d' (hélion) ; elles peuvent donc s'écrire 4He2+. La masse d'une particule alpha est de , ce qui équivaut à une énergie de masse de . Radioactivité α Les particules alpha sont émises par des noyaux radioactifs, comme l'uranium ou le radium, par l'intermédiaire du processus de désintégration alpha.
Even and odd atomic nucleiIn nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number (proton number) Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model.