Kernel regressionIn statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In any nonparametric regression, the conditional expectation of a variable relative to a variable may be written: where is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate as a locally weighted average, using a kernel as a weighting function.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Orbitale moléculairevignette|Orbitales moléculaires du 1,3-butadiène, montrant les deux orbitales occupées à l'état fondamental : π est liante entre tous les atomes, tandis que π n'est liante qu'entre les atomes C et C ainsi qu'entre les atomes C et C, et est antiliante entre C et C. En chimie quantique, une orbitale moléculaire est une fonction mathématique décrivant le comportement ondulatoire d'un électron dans une molécule.
Liaison chimiqueUne liaison chimique est une interaction durable entre plusieurs atomes, ions ou molécules, à une distance permettant la stabilisation du système et la formation d'un agrégat ou d'une substance chimique. Les électrons, chargés négativement, gravitent autour d’un noyau constitué de protons chargés positivement. Les deux corps s’attirent du fait de la force électrostatique s’exerçant entre les électrons et les protons. Ainsi, un électron positionné entre deux noyaux sera attiré par les deux corps chargés positivement, et les noyaux seront attirés par l’électron.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Kernel smootherA kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average. Let be a kernel defined by where: is the Euclidean norm is a parameter (kernel radius) D(t) is typically a positive real valued function, whose value is decreasing (or not increasing) for the increasing distance between the X and X0.
Noyau de système d'exploitationUn noyau de système d’exploitation, ou simplement noyau, ou kernel en anglais, est une des parties fondamentales de certains systèmes d’exploitation. Il gère les ressources de l’ordinateur et permet aux différents composants — matériels et logiciels — de communiquer entre eux. En tant que partie du système d’exploitation, le noyau fournit des mécanismes d’abstraction du matériel, notamment de la mémoire, du (ou des) processeur(s), et des échanges d’informations entre logiciels et périphériques matériels.
Noyau polynomialEn apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. Intuitivement, le noyau polynomial ne tient pas compte uniquement des propriétés des échantillons d'entrée afin de déterminer leur similitude, mais aussi des combinaisons de ceux-ci.