Differential Privacy and Byzantine Resilience in SGD: Do They Add Up?
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of learning multi-ridge functions of the form f (x) = g(Ax) from point evaluations of f. We assume that the function f is defined on an l(2)-ball in R-d, g is twice continuously differentiable almost everywhere, and A is an element ...
This paper studies the problem of inferring whether an agent is directly influenced by another agent over a network. Agent i influences agent j if they are connected (according to the network topology), and if agent j uses the data from agent i to update i ...
Object classification and detection aim at recognizing and localizing objects in real-world images. They are fundamental computer vision problems and a prerequisite for full scene understanding. Their difficulty lies in the large number of possible object ...
Programme doctoral en Informatique, Communications et Information2013
This report presents key interdisciplinary insights from IRGC’s expert workshop on the governance of decision-making algorithms, with particular focus on automated decisions based on learning algorithms (DMLAs). It highlights, among others, the need to imp ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
We propose an algorithm to learn from distributed data on a network of arbitrarily connected machines without exchange of the data-points. Parts of the dataset are processed locally at each machine, and then the consensus communication algorithm is employe ...
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have devel ...
We show how the convergence time of an adaptive network can be estimated in a distributed manner by the agents. Using this procedure, we propose a distributed mechanism for the nodes to switch from using fixed doubly-stochastic combination weights to adapt ...
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have devel ...
In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to \textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their learni ...