Mesure stéréoscopiqueLa stéréovision ou mesure stéréoscopique est une méthode de mesure qui consiste à se servir de la prise d'images (photographiques ou numériques) prises de différents points de vue, pour déterminer les dimensions, les formes ou les positions d'objets. Pour cela on utilise : soit des appareils photographiques étalonnés utilisant des films argentiques plans et stables dimensionnellement ou des détecteurs C.C.D à haute résolution pour des mesures statiques ; soit des caméras (film ou CCD) si des mesures dynamiques sont nécessaires (vidéogrammétrie).
Analyse d'imageL'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Fixation (histology)In the fields of histology, pathology, and cell biology, fixation is the preservation of biological tissues from decay due to autolysis or putrefaction. It terminates any ongoing biochemical reactions and may also increase the treated tissues' mechanical strength or stability. Tissue fixation is a critical step in the preparation of histological sections, its broad objective being to preserve cells and tissue components and to do this in such a way as to allow for the preparation of thin, stained sections.
TelepathologyTelepathology is the practice of pathology at a distance. It uses telecommunications technology to facilitate the transfer of image-rich pathology data between distant locations for the purposes of diagnosis, education, and research. Performance of telepathology requires that a pathologist selects the video images for analysis and the rendering of diagnoses. The use of "television microscopy", the forerunner of telepathology, did not require that a pathologist have physical or virtual "hands-on" involvement in the selection of microscopic fields-of-view for analysis and diagnosis.
Spaces of test functions and distributionsIn mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the , that makes into a complete Hausdorff locally convex TVS.
LF-spaceIn mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces. If each of the bonding maps is an embedding of TVSs then the LF-space is called a strict LF-space.