Publication

Recommendation on Live-Streaming Platforms: Dynamic Availability and Repeat Consumption

Karl Aberer, Jérémie Rappaz
2021
Article de conférence
Résumé

Live-streaming platforms broadcast user-generated video in real-time. Recommendation on these platforms shares similarities with traditional settings, such as a large volume of heterogeneous content and highly skewed interaction distributions. However, several challenges must be overcome to adapt recommendation algorithms to live-streaming platforms: first, content availability is dynamic which restricts users to choose from only a subset of items at any given time; during training and inference we must carefully handle this factor in order to properly account for such signals, where 'non-interactions' reflect availability as much as implicit preference. Streamers are also fundamentally different from 'items' in traditional settings: repeat consumption of specific channels plays a significant role, though the content itself is fundamentally ephemeral. In this work, we study recommendation in this setting of a dynamically evolving set of available items. We propose LiveRec, a self-attentive model that personalizes item ranking based on both historical interactions and current availability. We also show that carefully modelling repeat consumption plays a significant role in model performance. To validate our approach, and to inspire further research on this setting, we release a dataset containing 475M user interactions on Twitch over a 43-day period. We evaluate our approach on a recommendation task and show our method to outperform various strong baselines in ranking the currently available content.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.