Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories
Publications associées (87)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but ...
Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still contro ...
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol ...
Extreme events in the stratospheric polar vortex can lead to changes in the tropospheric circulation and impact the surface climate on a wide range of timescales. The austral stratospheric vortex shows its largest variability in spring, and a weakened pola ...
While carbon dioxide is the main cause for global warming, modeling short-lived climate forcers (SLCFs) such as methane, ozone, and particles in the Arctic allows us to simulate near-term climate and health impacts for a sensitive, pristine region that is ...
Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through ...
Environmental extreme events can have devastating impacts on society when they interact with vulnerable human and natural systems. Such events can result from natural causes, like phenomena related to the El Ni~no-Southern Oscillation or decadal/multi-dec ...
The Arctic is warming three times faster than the rest of the planet. Increased areas of open ocean and changes in atmospheric transport pathways affect the Arctic atmospheric chemical and microphysical state, which themselves can modulate cloud, precipita ...
Biomass burning emissions often contain brown carbon (BrC), which represents a large family of light-absorbing organics that are chemically complex, thus making it difficult to estimate their absorption of incoming solar radiation, resulting in large uncer ...
During summer, the Southern Ocean is largely unaffected by anthropogenic emissions, which makes this region an ideal place to investigate marine natural aerosol sources and processes. A better understanding of natural aerosol is key to constrain the preind ...