Publication

Crash test-based assessment of injury risks for adults and children when colliding with personal mobility devices and service robots

Résumé

Autonomous mobility devices such as transport, cleaning, and delivery robots, hold a massive economic and social benefit. However, their deployment should not endanger bystanders, particularly vulnerable populations such as children and older adults who are inherently smaller and fragile. This study compared the risks faced by different pedestrian categories and determined risks through crash testing involving a service robot hitting an adult and a child dummy. Results of collisions at 3.1 m/s (11.1 km/h/6.9 mph) showed risks of serious head (14%), neck (20%), and chest (50%) injuries in children, and tibia fracture (33%) in adults. Furthermore, secondary impact analysis resulted in both populations at risk of severe head injuries, namely, from falling to the ground. Our data and simulations show mitigation strategies for reducing impact injury risks below 5% by either lowering the differential speed at impact below 1.5 m/s (5.4 km/h/3.3 mph) or through the usage of absorbent materials. The results presented herein may influence the design of controllers, sensing awareness, and assessment methods for robots and small vehicles standardization, as well as, policymaking and regulations for the speed, design, and usage of these devices in populated areas.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.